Yıl (Year) : 2025/3 Cilt (Vol) : 32 Sayı (No) : 139

Derleme Makalesi / Review Article

A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES

Mahbub Alam SAYAM¹
Md. Al-AMIN²
Rui ZHOU³
Abdullah Al MAMUN^{3*}

¹Department of Fabric Engineering, Shahid Abdur Rab Serniabat Textile Engineering College, Barishal, Bangladesh.

²Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, U.S.A.

³Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, U.S.A.

Gönderilme Tarihi / Received: 11.12.2024 Kabul Tarihi / Accepted: 04.06.2025

ABSTRACT: The integration of 3D printing technology into smart textiles has witnessed a surge of interest from academia and industry over the past decade. 3D printing's inherent capability to fabricate intricate and customizable structures enhances functionality across key areas such as wearable electronics, medical textiles, and interactive fashion. Various 3D printing techniques, including Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Direct Ink Writing (DIW), and PolyJet printing, are currently employed in the fabrication of smart textiles. However, the wide range of applications for 3D printing in smart textiles often presents a challenge in synthesizing existing research accomplishments and identifying research gaps. To address this challenge, this review paper offers a comprehensive, application-oriented analysis of these specific 3D printing techniques and the materials utilized across various smart textile applications, including wearable technology, medical textiles, and smart fashion design. Our analysis draws upon a comprehensive review of peer-reviewed literature published between 2016 and 2024, identified through systematic searches of Google Scholar, PubMed, and Scopus. A central aim of this review is to emphasize the critical understanding of these 3D printing techniques for strategically selecting the most suitable method to incorporate advanced functionalities within smart textiles and interactive fashion. Despite significant progress in utilizing 3D printing for smart textile production, substantial challenges persist in the effective integration of diverse wearable sensors, necessitating interdisciplinary collaboration to develop innovative hybrid manufacturing strategies.

Keywords: 3D printing; Fabric surface; Fused deposition modeling; Smart textiles; Wearable sensors.

AKILLI TEKSTİLLERDE KULLANILAN 3D BASKI TEKNOLOJİLERİ VE MALZEMELERİNE İLİŞKİN KISA BİR DEĞERLENDİRME

ÖZET:3D baskı teknolojisinin akıllı tekstillere entegrasyonu, son on yılda akademi ve endüstriden büyük ilgi gördü. 3D baskının karmaşık ve özelleştirilebilir yapılar üretme konusundaki doğal yeteneği, giyilebilir elektronikler, tıbbi tekstiller ve etkileşimli moda gibi temel alanlarda işlevselliği artırır. Erimiş Biriktirme Modelleme (FDM), Seçici Lazer Sinterleme (SLS), Doğrudan Mürekkep Yazımı (DIW) ve PolyJet baskı dahil olmak üzere çeşitli 3D baskı teknikleri şu anda akıllı tekstillerin üretiminde kullanılmaktadır. Ancak, akıllı tekstillerde 3D baskının geniş uygulama yelpazesi, mevcut araştırma başarılarını sentezlemede ve araştırma boşluklarını belirlemede sıklıkla bir zorluk teşkil eder. Bunu ele almak için, bu inceleme makalesi bu belirli 3D baskı tekniklerinin ve giyilebilir teknoloji, tıbbi tekstiller ve akıllı moda tasarımı dahil olmak üzere çeşitli akıllı tekstil uygulamalarında kullanılan malzemelerin kapsamlı, uygulamaya yönelik bir analizini sunmaktadır. Bu analiz, Google Scholar, PubMed ve Scopus (2016-2024) tarafından kaynak gösterilen hakemli literatürün kapsamlı bir incelemesine dayanmaktadır. Bu incelemenin temel amacı, akıllı tekstiller ve etkileşimli moda içinde gelişmiş işlevleri birleştirmek için en uygun yöntemi stratejik olarak seçmek amacıyla bu 3D baskı tekniklerinin kritik anlaşılmasını vurgulamaktır. Akıllı tekstil üretimi için 3D baskının kullanımında önemli ilerleme kaydedilmesine rağmen, çeşitli giyilebilir sensörlerin etkili bir şekilde entegre edilmesinde önemli zorluklar devam etmekte olup, yenilikçi hibrit üretim stratejileri geliştirmek için disiplinler arası iş birliğini gerekli kılmaktadır.

Anahtar kelimeler: 3D baskı; Kumaş yüzeyi; Erimiş biriktirme modelleme; Akıllı tekstiller; Giyilebilir sensörler.

*Sorumlu Yazar/Corresponding Author: amamun@una.edu

DOI: https://doi.org/10.7216/teksmuh.1599672 www.tekstilvemuhendis.org.tr